由于成像硬件和重建算法的重大进展,计算成像拐角处或非视线(NLOS)成像的方法正在成为现实。 NAM等人的最新发展NLOS成像。展示了一个高速非焦距成像系统,其运行速度为5Hz,比以前的ART快100倍。然而,这种巨大的采集率增长需要在光传输中进行大量近似,打破了许多现有的NLOS重建方法,这些方法采用了理想化的图像形成模型。为了弥合差距,我们提出了一个新颖的深层模型,该模型结合了波传播和体积渲染的互补物理学先验,以进行高质量和强大的NLOS重建。该精心策划的设计通过放松图像形成模型来规范解决方案空间,从而产生了一个深层模型,尽管在合成数据上只接受了专门的培训,但在真实捕获上却很好地概括了。此外,我们设计了一个统一的学习框架,使我们的模型能够使用各种监督信号(包括目标强度图像甚至RAW NLOS瞬态测量)灵活训练我们的模型。一旦受过训练,我们的模型就会在一次前传球中的推理时间呈现强度和深度图像,能够在高端GPU上处理超过5个以上的捕获。通过广泛的定性和定量实验,我们表明我们的方法的表现优于先前的物理和基于学习的方法,同时基于合成和实际测量。我们预计,我们的方法以及快速捕获系统将加速NLOS成像的未来开发,用于需要高速成像的现实世界应用。
translated by 谷歌翻译
在移动摄影和AR / VR中,视觉内容创建刺激了飙升的兴趣。作为两个代表性任务的样式转移和单像3D摄影迄今为止独立发展。在本文中,我们在两者之间进行了联系,并解决了3D照片风格化的具有挑战性的任务 - 从单个图像中生成了一个任意映像的程式化的小说视图。我们的关键直观是,风格转移和视图综合必须为此任务共同建模。为此,我们提出了一个深入的模型,可以从场景的点云表示,从场景的点云表示,学习几何风格感知内容特征,从而导致跨视图一致的高质量风格化图像。此外,我们介绍了一种新颖的训练协议,以使学习仅使用2D图像。我们通过广泛的定性和定量研究展示了我们的方法的优越性,以及鉴于从2D图像资产的3D内容创建的需求不断增长,展示我们方法的关键应用。
translated by 谷歌翻译
The ability to jointly learn from multiple modalities, such as text, audio, and visual data, is a defining feature of intelligent systems. While there have been promising advances in designing neural networks to harness multimodal data, the enormous success of data augmentation currently remains limited to single-modality tasks like image classification. Indeed, it is particularly difficult to augment each modality while preserving the overall semantic structure of the data; for example, a caption may no longer be a good description of an image after standard augmentations have been applied, such as translation. Moreover, it is challenging to specify reasonable transformations that are not tailored to a particular modality. In this paper, we introduce LeMDA, Learning Multimodal Data Augmentation, an easy-to-use method that automatically learns to jointly augment multimodal data in feature space, with no constraints on the identities of the modalities or the relationship between modalities. We show that LeMDA can (1) profoundly improve the performance of multimodal deep learning architectures, (2) apply to combinations of modalities that have not been previously considered, and (3) achieve state-of-the-art results on a wide range of applications comprised of image, text, and tabular data.
translated by 谷歌翻译
The current optical communication systems minimize bit or symbol errors without considering the semantic meaning behind digital bits, thus transmitting a lot of unnecessary information. We propose and experimentally demonstrate a semantic optical fiber communication (SOFC) system. Instead of encoding information into bits for transmission, semantic information is extracted from the source using deep learning. The generated semantic symbols are then directly transmitted through an optical fiber. Compared with the bit-based structure, the SOFC system achieved higher information compression and a more stable performance, especially in the low received optical power regime, and enhanced the robustness against optical link impairments. This work introduces an intelligent optical communication system at the human analytical thinking level, which is a significant step toward a breakthrough in the current optical communication architecture.
translated by 谷歌翻译
In this paper, we study the use of deep Transformer translation model for the CCMT 2022 Chinese-Thai low-resource machine translation task. We first explore the experiment settings (including the number of BPE merge operations, dropout probability, embedding size, etc.) for the low-resource scenario with the 6-layer Transformer. Considering that increasing the number of layers also increases the regularization on new model parameters (dropout modules are also introduced when using more layers), we adopt the highest performance setting but increase the depth of the Transformer to 24 layers to obtain improved translation quality. Our work obtains the SOTA performance in the Chinese-to-Thai translation in the constrained evaluation.
translated by 谷歌翻译
Cooperative multi-agent reinforcement learning (c-MARL) is widely applied in safety-critical scenarios, thus the analysis of robustness for c-MARL models is profoundly important. However, robustness certification for c-MARLs has not yet been explored in the community. In this paper, we propose a novel certification method, which is the first work to leverage a scalable approach for c-MARLs to determine actions with guaranteed certified bounds. c-MARL certification poses two key challenges compared with single-agent systems: (i) the accumulated uncertainty as the number of agents increases; (ii) the potential lack of impact when changing the action of a single agent into a global team reward. These challenges prevent us from directly using existing algorithms. Hence, we employ the false discovery rate (FDR) controlling procedure considering the importance of each agent to certify per-state robustness and propose a tree-search-based algorithm to find a lower bound of the global reward under the minimal certified perturbation. As our method is general, it can also be applied in single-agent environments. We empirically show that our certification bounds are much tighter than state-of-the-art RL certification solutions. We also run experiments on two popular c-MARL algorithms: QMIX and VDN, in two different environments, with two and four agents. The experimental results show that our method produces meaningful guaranteed robustness for all models and environments. Our tool CertifyCMARL is available at https://github.com/TrustAI/CertifyCMA
translated by 谷歌翻译
The architecture of transformers, which recently witness booming applications in vision tasks, has pivoted against the widespread convolutional paradigm. Relying on the tokenization process that splits inputs into multiple tokens, transformers are capable of extracting their pairwise relationships using self-attention. While being the stemming building block of transformers, what makes for a good tokenizer has not been well understood in computer vision. In this work, we investigate this uncharted problem from an information trade-off perspective. In addition to unifying and understanding existing structural modifications, our derivation leads to better design strategies for vision tokenizers. The proposed Modulation across Tokens (MoTo) incorporates inter-token modeling capability through normalization. Furthermore, a regularization objective TokenProp is embraced in the standard training regime. Through extensive experiments on various transformer architectures, we observe both improved performance and intriguing properties of these two plug-and-play designs with negligible computational overhead. These observations further indicate the importance of the commonly-omitted designs of tokenizers in vision transformer.
translated by 谷歌翻译
Pre-trained large language models can efficiently interpolate human-written prompts in a natural way. Multitask prompted learning can help generalization through a diverse set of tasks at once, thus enhancing the potential for more effective downstream fine-tuning. To perform efficient multitask-inference in the same batch, parameter-efficient fine-tuning methods such as prompt tuning have been proposed. However, the existing prompt tuning methods may lack generalization. We propose SPT, a semi-parametric prompt tuning method for multitask prompted learning. The novel component of SPT is a memory bank from where memory prompts are retrieved based on discrete prompts. Extensive experiments, such as (i) fine-tuning a full language model with SPT on 31 different tasks from 8 different domains and evaluating zero-shot generalization on 9 heldout datasets under 5 NLP task categories and (ii) pretraining SPT on the GLUE datasets and evaluating fine-tuning on the SuperGLUE datasets, demonstrate effectiveness of SPT.
translated by 谷歌翻译
We propose an extrinsic Bayesian optimization (eBO) framework for general optimization problems on manifolds. Bayesian optimization algorithms build a surrogate of the objective function by employing Gaussian processes and quantify the uncertainty in that surrogate by deriving an acquisition function. This acquisition function represents the probability of improvement based on the kernel of the Gaussian process, which guides the search in the optimization process. The critical challenge for designing Bayesian optimization algorithms on manifolds lies in the difficulty of constructing valid covariance kernels for Gaussian processes on general manifolds. Our approach is to employ extrinsic Gaussian processes by first embedding the manifold onto some higher dimensional Euclidean space via equivariant embeddings and then constructing a valid covariance kernel on the image manifold after the embedding. This leads to efficient and scalable algorithms for optimization over complex manifolds. Simulation study and real data analysis are carried out to demonstrate the utilities of our eBO framework by applying the eBO to various optimization problems over manifolds such as the sphere, the Grassmannian, and the manifold of positive definite matrices.
translated by 谷歌翻译
Time series anomaly detection strives to uncover potential abnormal behaviors and patterns from temporal data, and has fundamental significance in diverse application scenarios. Constructing an effective detection model usually requires adequate training data stored in a centralized manner, however, this requirement sometimes could not be satisfied in realistic scenarios. As a prevailing approach to address the above problem, federated learning has demonstrated its power to cooperate with the distributed data available while protecting the privacy of data providers. However, it is still unclear that how existing time series anomaly detection algorithms perform with decentralized data storage and privacy protection through federated learning. To study this, we conduct a federated time series anomaly detection benchmark, named FedTADBench, which involves five representative time series anomaly detection algorithms and four popular federated learning methods. We would like to answer the following questions: (1)How is the performance of time series anomaly detection algorithms when meeting federated learning? (2) Which federated learning method is the most appropriate one for time series anomaly detection? (3) How do federated time series anomaly detection approaches perform on different partitions of data in clients? Numbers of results as well as corresponding analysis are provided from extensive experiments with various settings. The source code of our benchmark is publicly available at https://github.com/fanxingliu2020/FedTADBench.
translated by 谷歌翻译